The Catlin Multitype and Biholomorphic Equivalence of Models

نویسنده

  • MARTIN KOLÁŘ
چکیده

We consider an alternative approach to a fundamental CR invariant – the Catlin multitype. It is applied to a general smooth hypersurface in C, not necessarily pseudoconvex. Using this approach, we prove biholomorphic equivalence of models, and give an explicit description of biholomorphisms between different models. A constructive finite algorithm for computing the multitype is described. The results can be viewed as providing a necessary step in understanding local biholomorphic equivalence of Levi degenerate hypersurfaces of finite Catlin multitype.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Local Geometry of Finite Multitype Hypersurfaces

This paper studies local geometry of hypersurfaces of finite multitype. Catlin’s definition of multitype is applied to a general smooth hypersurface in C. We prove biholomorphic equivalence of models in dimension three and describe all biholomorphisms between such models. A finite constructive algorithm for computing multitype is described. Analogous results for decoupled hypersurfaces are given.

متن کامل

Higher Order Invariants of Levi Degenerate Hypersurfaces

The first part of this paper considers higher order CR invariants of three dimensional hypersurfaces of finite type. Using a full normal form we give a complete characterization of hypersurfaces with trivial local automorphism group, and analogous results for finite groups. The second part considers hypersurfaces of finite Catlin multitype, and the Kohn-Nirenberg phenomenon in higher dimensions...

متن کامل

Kernel Convergence and Biholomorphic Mappings in Several Complex Variables

We deal with kernel convergence of domains in Cn which are biholomorphically equivalent to the unit ball B. We also prove that there is an equivalence between the convergence on compact sets of biholomorphic mappings on B, which satisfy a growth theorem, and the kernel convergence. Moreover, we obtain certain consequences of this equivalence in the study of Loewner chains and of starlike and co...

متن کامل

Central Limit Theorem in Multitype Branching Random Walk

A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.

متن کامل

Examples of Application of Nil-polynomials to the Biholomorphic Equivalence Problem for Isolated Hypersurface Singularities

Let V1, V2 be hypersurface germs in C m withm ≥ 2, each having a quasi-homogeneous isolated singularity at the origin. In our recent article [7] we reduced the biholomorphic equivalence problem for V1, V2 to verifying whether certain polynomials, called nilpolynomials, that arise from the moduli algebras of V1, V2 are equivalent up to scale by means of a linear transformation. In this paper we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009